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ABSTRACT

We are interested in solving the sparse linear
systems, Av = b, that arise from finite difference or
finite element approximations to partial differential

equations. May iterative methods require solving an
easier approximate equation, Pv=Db, on each
iteration. This is often called preconditioning or

operator splitting [1,2,4,6-9,12-14]. The methods we
consider factor A approximately into the product of
an upper and lower triangular matrix P = LU = A.
These methods are called incomplete LU factorization
methods and their convergence rate depends on how
well P approximates A. We describe some new
algorithms to generate accurate LU decompositions
based on the continuity of the solution v.

I. INTRODUCTION

In this paper we consider iterative numerical
methods for the solution of sparse linear systems of
the form,

Av =D , (1)
that arise in the finite difference or finite element
approximation of a partial differential equation
(PDEs). In these equations the vector v of length N
approximates the smooth solution to a descritized PDE
defined on an underlying n X n spatial mesh. The
smoothness of the solution will be exploited to
define high order approximate factorizations of A.
For simplicity we will analyze these Qfoblens for

two-dimensional equations where N =n but the
methods generalize easily to higher * dimensions.
1f the matrix P approximates A, then
nonstationary iterative methoeds of the form [15]
- . .
e R N TS I )

can be used to solve (1.1). The matrix P, called the
preconditioning matrix, is generated by approximating
A by an incomplete LU decomposition [2,6,8,9,12-14].
That is,

A=1LDU-R=P-R , (3)
where L is lower triangular, D is diagonal, U is an
upper triangular matrix and R is the residual error
matrix. The matrices L and U have unit diagonals.
These matrices are chosen so that the residual matrix
R is small and the approximating system Pv = b is
easier to solve than Eq. (1). The nonzero structure
of L + U is chosen to be similar to (if not equal to)
the nonzero structure of A.

The number of iterations the algorithm takes to
converge to a specified eryor tolegince is relatgq to
the condition number of P A = k(P "A) = x(I - P 'R).
(The condition number is the ratio of the largest to
smallest singular value of a matrix.) Note that the
smaller the residual matrix is the smaller the
condition number will be and the faster the method
will converge.
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Often the iteration can be accelerated using a
conjugate gradient [1,3-5,7,8,12], Chebychev
[10,11], or other polynomial acceleration algorithm.
When conjugate gradient acceleration or Chebychev
acceleration is used the convergence rate 1s
proportional to the square root of the condition
number.

We will give a nom-rigorous ffgument on how to
estimate the condition number K(P A)._iWe assume P
is close_lenough to A so that if 11A "1l = 0o(h )
then ||P "|] = 0(h "), where |[|-]] is the operator
norm induced by the 2-porm and h = 1/n is the mesh
spacing. (For Laplace's equafion, we have a = 2.).
when |IR]|] 3 {|A - P|| = 0(h") then the condition
number of P "A can be approximated by

k(@ la) = 1127 1a1)

11a” e

-1 -
lx+ 2 RIL 1T - a7MRIY

[1+ 0™ D{hB)}{l + 0™ O(hﬁJ]

e

1+ 0P

1 + U(N(a-ﬁ)lz)

The condition number of A, k(A) = O(h-u), is
determined by the problem being solved but the
condition number of the residual matrix can be
reduced by making P_as close to A as possible. That
is, if |IR]|| = O(hﬁ), then we wish to make B as
large as possible. In particular, if f > o then the
method will converge faster for larger problems than
smaller ones.

A standard method for forming L and U is to
perform a complete decomposition and discard fill-in
[12] or to add the discarded fill-in back to the
diagonal [8,9]. We wish to abandon this approach in
favor of treating the elements of L, D, and U as
unknowns and choosing them so that R has certain
desirable properties.

Since A is assumed to be the discritization of
a partial differential operator we know that the
eigenvectors (singular vectors) associated with the
smallest eigenvalues (singular valves) will be
relatively smooth. The components of the error in
the direction of these eigenvectors will be the most
difficult to resolve using iterative methods. For
this reason, we would like to construct P to
approximate A closely on the discrete analogues of
smooth functions. In other words, we will choose P

so that R is as small as possible on smooth
functions.
To illustrate this approach consider the

discritization of the diffusion convection equation

9 av 3 av v av g
- ax(tipy) - 5;(“25;) t By * Bzay +yv = f

(4)

defined on the regionm [0,1] x [0,1].



The five-point star second-order approximation
to Eq. (4) often leads to a finite difference
approximation that can be written

ak.1 v + ak v + ak v
150 Yi-1,4 " 0.0 5,5 T10 Tisg
)
k k-n
+ + =
35,1 ¥i,3+1 T %0,-1 Yi,i-1 ~ Pi,j
at each point in the mesh. There v. . is the
i
solution at (xi,yj) and is the k-th [k = i + (j - 1)a]

element in the one dimensional v array.
The matrix A is shown in Fig. 1 and will be

: Y SO S o ! k _ _kn
symmetric (A = A") if a 0730 and 23,1 = %,-1°
1
ao,
1
a.1,0

L

Figure 1. The matrix A for the five point operator.

The stencil of a finite difference approximation
can be an excellent tool to understand how the
underlying mesh, the matrix A, and its approximation
P are related. Using notation from Dupont, Kendall
and Rachford [6] a five point approximation to (4)

leds to a matrix A described by the stencil in
Fig. 2.

("i ’*",1+1)T ag,l

k-1 X ¥
a-l R 0 3-0 0 31 ’0
L - +— —e ,
e () ()

. a
("1 "’:1—1). 0,-1
Figure 2. The stencil for the matrix A.

The coefficients at the nodes (mesh points) are
the elements in the k-th, [k =i + (j - 1)a], row of
A.
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In the simplest incomplete LU decomposition of
A, the matrix L + U has the same nonzero structure
as A. We shall call this factorization the ILU(D)
method since it has no extra nonzero elements.

The ILU(O) Method

In the ILU(Q) method the lower triangular

matrix L shown in Fig. 3.a, has the stencil shown in
Fig. 3.b.

N-n N-1
L_ 29,21 221 0 1

Figure 3.a. The matrix L for the ILU(O) method.

k-1 k
-1,0

k-n
%9,-1

Q
Figure 3.b. The stencil for L.

The upper triangular matrix U, shown in
Fig. 4.a, has the stencil in Fig. 4.b. The diagonal
matrix D has diagonal elements & . The stencil for
the preconditioning matrix P = LDU is shown in
Fig. 5.




bE_a liniar funftion of the five unknowns ﬁk, 21_‘;10,
— ] 2, _y» Yy g» Yo .- These terms are also functiéas
1 1 og'oh:cr v’glnes b} &, £, and u which we shall assume
to be chosen already.
2 2 Since there are seven steancil points, it will
1 Uy .0 Y1 o not be possible in general to make the k= row of R
identically =zero. We may, however, choose the
parameters so as to make the stencil zero on the
points associated with the stencil of A. This
corresponds to the methods in {10]. 1f we choose
the unknowns so that the product of R times a
(o] constant vector is zero we have lost only one degree
§ = of freedom. One choice of the remaining four
corresponds to the method described in [8]. Suppose
u we use two more degrees of freedom to make the
0,1 product Rv = 0 when v corresponds to a function that
is constant in x and linear in y, or when Vv
corresponds to a function that is constant in ¥y and
linear in x; then, there are two degrees of freedom
(o] left. If v corresponds to a function with two
N-1 continuous fetivatives each term of the product Rv
Ul 0 will be 0(h™).
’ The remaining two degrees of freedom are
insufficient to make the product zero on the
1 quagratics and bilinear functions, consequently
b - 0(h“) is the best we may achieve. However, the two
Figure 4a. The matrix U for the ILU(0) method. degrees of freedom may be ed to reduce the
size of the elements in the k row of R. If we
k choose to minimize the sum of the squares the
T Y0,1 unknowns may be found by solving a 5 X 7 constrained
least squares problem. Another uge of these degrees
of freedom might be to make L° - U as small as
possible and thus P more nearly symmetric.
The entire procedure involves passing
k k sequentially through the grid points fnd choosing
8- Y1,0 the five unknowns so that (Rv), = 0(h"). At each
AL —e grid-point, the equations involve elements of L, D,
and U that were chosen at previous grid-points, and
the five elements mentioned above. This
preconditioning has been shown to be superior to
incomplete Cholesky [12] or modified incomplete
Cholesky [8] on test problems. However, what we
really seek is a factorization for which (Rv), =
0(h®). If the elements of R remain bounded as h is
L reduced to =zero, this would yield JIRvI| = 0(h")
whenever u cor;fsponds to a smooth function. The
Figure 4b. The stencil for U. condition of P A would be independent of h. For
this we need a larger stencil.

k
Pyl Po,1 The Compact ILU(1) Method

r B

A more accurate incomplete factorization of A
can be formed by allowing L and U to have nonzero
elements in the positions other than those where A
is nonzero. If both L and U have one extra nonzero
element then the method is called an ILU(1) method.

k-1 k k There are several choices as to where this extra
Poi,0 JPO.O P10 element can be added. To reduce the extrapolation
# error we chose to add this extra element such that
T the stencil for P = LDU will be as close to A as

possible. This choice, called the compact ILU(1)
method, has an L and U with the nonzero structure
shown in Fig. 6. (The factorizations described in

e ot (8] and [12] add 257711 K

+1,1 *¥-1,-1
P, -1 Pyo1 and U.) ’ ’

e

Figure 5. The stencil for the preconditioning matrix
P = LDU.

to the stemcil of L

This will also be the stencil {_glr the residual
matrix R = P-A. Each entry in the k row of R will

553




squares of the elements of R or to promote the
symmetry of P. These conditions yield - a 9 %7
constrained least squares problem. We may in this
fasion pass sequentially through the mesh choosing
L, D, and U in such a way that if v corresponds to a

k-1 function war.h three continuous derivatives then

ok- s (Rv), = 0(h>).

-1,0 l"IJnft:Jﬂ:u.nm:e].jr, the size of the elements of R
groys as h + 0 with the net result that ||Rv]| =
0(h"). If instead we us only three degrees of

freedom to make (Rv), = 0(h") and the remaining four
to reduce the size of the elements of R, a
preconditioning results that is again superior to IC
and MIC. The other four degrees of freedom may be
gk-n-1 gk-n used to promote symmetry and, in fact, P can be made
=l,-1 0,-1 Symmetric except near two of the four boundaries.

[ -
L The TLU(2) and ILU(3) Methods
Figure 6a. The nonzero structure for L for the Let us consider even larger stencils in the
compact ILU(1) method. hope that one may be found for which IIRvi] = o(n”)
u uk for sufficiently smooth v. Clearly, such a stencil
0 1,1 exists because exact decomposition yields Rv = 0.
B & —e In the ILU(2) method we add one more point to the
stencil of L and U in the positions shown in Fig. 8.
uk
—kﬁ— -9 1,0
8 !.k-l 6k
-1,0
U lk.—n-l zk—n £k-n+1
Figure 6b. The nonzero structure for U for the -1,-1 0,-1 J 1,-1
compact ILU(1) method. - 4L
Their product P = LDU has the nonzero structure shown L
in Fig. 7, as does the residual matrix R. Figure 8a. The stencil for L for the nine point
ILU(2) method.
r— — —e .
k k k
Tk Yo bt 701
— L —9
o — —
k
§
~— 4.k
1. 40,
‘i . 5
Figure 7. The nonzero structure for P = LDU for the
compact ILU(1) method.
With this stencil we have seven unknowns and u
nine stencil points. Again R cannot be made Figure 8b. The stencil for U for the nine point
identically zero. Suppose v corresponds to a ILU(2) method.
quadratic, polynomial; . that is, v(x,y) =p +p x +
P,y + PoX +;pﬁxy *+ p.y . Let us choose the elements The stencil for P = LDU is shown in Fig. 9.
o% R sé that Rv = for any such polynomial. This

requires 6 degrees of freedom. The remaining degree
of freedom may be used to minimize the sums of the
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o

Figure 9.

Using this same strategy we can add three extra
points to the basic ILU(0) stencils. In this ILU(3)
method there are 11 unknowns and 15 stencil points.
Recall that only six degrees ff freedom are required
in order to make (Rv), = O(h”) on smooth functionms.
The remaining degrees of freedom can be used to
control the size of the elements of R.

Summary
In this paper we have presented a hueristic

motivation for choosing the elements of a family of
incomplete factorizations. Members of this family
have been shown to be numerically superior to the
IC(12) and MIC(8) factorizations. However, the work
required to form the factorizations is greater and
not easily vectorized. If a _factorization could be

found for which ||Rv]] = 0(h”) on smooth functions
then the extra work could be justified. Numerical
results for the ILU(2) and ILU(3) methods are

incomplete but show great promise.
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